11 research outputs found

    Fast phase randomisation via two-folds

    Get PDF
    A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold

    Andronov-Hopf Bifurcations in Planar, Piecewise-Smooth, Continuous Flows

    Full text link
    An equilibrium of a planar, piecewise-C1C^1, continuous system of differential equations that crosses a curve of discontinuity of the Jacobian of its vector field can undergo a number of discontinuous or border-crossing bifurcations. Here we prove that if the eigenvalues of the Jacobian limit to λL±iωL\lambda_L \pm {\rm i} \omega_L on one side of the discontinuity and λR±iωR-\lambda_R \pm {\rm i} \omega_R on the other, with λL,λR>0\lambda_L, \lambda_R >0, and the quantity Λ=λL/ωLλR/ωR \Lambda = \lambda_L / \omega_L -\lambda_R / \omega_R is nonzero, then a periodic orbit is created or destroyed as the equilibrium crosses the discontinuity. This bifurcation is analogous to the classical Andronov-Hopf bifurcation, and is supercritical if Λ<0\Lambda < 0 and subcritical if Λ>0\Lambda >0.Comment: laTex, 18 pages, 8 figure

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Mixed-Mode Oscillations in a Stochastic, Piecewise-Linear System

    Full text link
    We analyze a piecewise-linear FitzHugh-Nagumo model. The system exhibits a canard near which both small amplitude and large amplitude periodic orbits exist. The addition of small noise induces mixed-mode oscillations (MMOs) in the vicinity of the canard point. We determine the effect of each model parameter on the stochastically driven MMOs. In particular we show that any parameter variation (such as a modification of the piecewise-linear function in the model) that leaves the ratio of noise amplitude to time-scale separation unchanged typically has little effect on the width of the interval of the primary bifurcation parameter over which MMOs occur. In that sense, the MMOs are robust. Furthermore we show that the piecewise-linear model exhibits MMOs more readily than the classical FitzHugh-Nagumo model for which a cubic polynomial is the only nonlinearity. By studying a piecewise-linear model we are able to explain results using analytical expressions and compare these with numerical investigations.Comment: 25 pages, 10 figure

    Discontinuity Induced Bifurcations in a Model of Saccharomyces cerevisiae

    Full text link
    We perform a bifurcation analysis of the mathematical model of Jones and Kompala [K.D. Jones and D.S. Kompala, Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures, J. Biotech., 71:105-131, 1999]. Stable oscillations arise via Andronov-Hopf bifurcations and exist for intermediate values of the dilution rate as has been noted from experiments previously. A variety of discontinuity induced bifurcations arise from a lack of global differentiability. We identify and classify discontinuous bifurcations including several codimension-two scenarios. Bifurcation diagrams are explained by a general unfolding of these singularities.Comment: 23 pages, 7 figure

    Closed-Form Critical Conditions of Saddle-Node Bifurcations for Buck Converters

    Full text link
    A general and exact critical condition of saddle-node bifurcation is derived in closed form for the buck converter. The critical condition is helpful for the converter designers to predict or prevent some jump instabilities or coexistence of multiple solutions associated with the saddle-node bifurcation. Some previously known critical conditions become special cases in this generalized framework. Given an arbitrary control scheme, a systematic procedure is proposed to derive the critical condition for that control scheme.Comment: Submitted to IEEE Transactions on Automatic Control on Jan. 9, 2012. Seven of my arXiv manuscripts have a common reviewe

    Transrectal Ultrasonic Planimetry of the Prostate in Relation to Age and Lower Urinary Tract Symptoms among Elderly Men in Japan.

    No full text
    corecore